User Manual

DACELL CO., LTD.

ADDRESS : 681-1, Cheoksan-Ri, Namyi-Myeon,
Cheongwon-Gun, Choongbuk
TEL: 043-260-2242
FAX : 043-260-2245
http://www.dacell.com
E-Mail : dana@danaloadcell.com

Contents

1. Characteristics 2
1-1. Mid-High Speed Changing Method 2
1-2. Correction Method 2
1-3. Output 2
1-4. Data Back-up 2
$1-5$. Watch dog 2
1-6. Option 2
1-7. Detection function for LOAD CELL LINE ERROR. 2
1-8. Power 2
2. Specification 3
3. Front Face Panel 4
4. Terminal Board 5
5. Cabling Draw 6
6. Setting mode 7
6-1. Function mode 7
6-2. Actual load calibration 12
7. Product Inspection 13
8. OPTION (OP-02, OP-03)
Option 02 (RS232C) 14
Option 03 (RS485) 16

1. Characteristics

Thank you for choosing our product. Please refer to the User Manual or contact us when you have any problem while you are using our product.

1-1. Mid-High Speed Changing Method

24bit high speed A/D changing equipment which could detect input signal of sensor at the speed of 1,000 times per second is being used.

1-2. Correction Method

Correction method as actual load (Standard load) has applied.

1-3. Output

The value of alarm \& stop relay could be settled from the Key under over load, and the signal of contact point shall be output.

1-4. Data Back-up

Input data shall not be restored due to power failure, because all the setting values shall be stored on flash memory.

1-5. Watch dog

This is automatic reset function when the system has stopped by external causes such as noise and etc.

1-6. Option

As addition options, RS232C, RS485 and Analog output could be used.
1-7. Power

The power is AC $90 \sim 240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ as Free voltage.

2. Specifications

- Usable Sensor : Strain gauge type sensor (Bridge 120 $, 350 \Omega, 700 \Omega$)
- Max. Indication : -19999 ~ +99999
- A/D Changer : 24bit, 1000 times/sec
- Temperature Characteristic (Amp Characteristic)
Zero
: $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$

Span
: 50ppm/ ${ }^{\circ} \mathrm{C}$

- Front Face Panel

Measuring Value Indication : 7 segment 5 Digit, Height of Letter 14 mm Status Indicating LED: Red LED 2 EA Key Switch : 4 EA

- Output

Comparison Output : A side, B side, Total Load OVER LOAD Alarm, Stop output Contact Point Capacity AC 250V 5A

- Range of Using Temperature $:-10^{\circ} \mathrm{C} \sim 60$, Under $82 \% \mathrm{RH}$ (No freezing)
- Power : AC $90 \sim 240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ free voltage
- Option : RS232C (OP-01), RS485 (OP-02), RS422 (OP-03), 4~20mA or 0~10V (OP-04)

3. Front Face Panel

(1) Measuring Value Indication: It indicates measuring value and other values.
(2) Over load alarm and stop indication lamp
(3) ZERO KEY3

Measuring Mode: If you push the Key for over 3 seconds, the current value shall be changed as Zero.
Set Mode: If you push the Key on the function setting mode, the measuring mode shall be recovered.
(4)

Measuring Mode: If you push the Key, the setting value of Relay is being shown and could be changed.

Set Mode: The line as location for flash figures shall be moved.
(5)

Measuring Mode: If you push the Key, the mode for actual load correction shall be operated.

Set Mode: The flash figure shall be increased by 1 figure (number).
(6) ENT

Measuring Mode: If you push the Key, the function mode shall be operated.
Set Mode: The setting value shall be saved.

4. Terminal Board

COM ZERO COM TX+ TX- RX+ RX- AG OUT ANALOG
RS232C/RS485/422

(8)
(9) 10
(1) AC IN : Power Cable Connection Terminal
(2) $)$ FG : Earth Terminal (Please contact earth separately)
(3) COM : RELAY output common terminal
(4) ALARLM : Over Load ALARM output terminal
(5) STOP: Over Load STOP output terminal
(6) RY3 : RELAY3 output terminal
(7) ZERO : ZERO input terminal
(8) DG, TXD, RXD : RS232C /RS485/RS422 SERIAL INTERFACE
(9) AG: Analog output GND terminal
(10) OUT : Analog output terminal
(11) EXC+ : Sensor supply voltage + connection terminal
(12) EXC- : Sensor supply voltage - connection terminal
(13) SIG+ : Sensor output signal + connection terminal
(14) SIG- : Sensor output signal - connection terminal
(15) $\mathrm{SH}:$ SHIELD of Sensor connection terminal
(16) AL : ALARM LAMP output terminal
(17) ST : STOP LAMP output terminal

Notice

1. Please plug the power out during the cabling.
2. The earth (Θ (erminal) shall be made by big size of cable to protect shock voltage or obstacle against surge, and the earth shall be made separately if possible.
(It shall be used in the place of high level of noise, and if the earth is being made with other machine, the noise will be affected.)
3. Please confirm the function of terminal and connect cables to protect failure of operation in advance.
4. In the event of accident which has made by intentionally disjoint and modification without consent of the Company, the responsibility shall be borne by the User and A/S shall not be made.

5. Setting Modes

6-1. Function mode (Function Setting)

1) Function setting method

2) OVER LOAD ALARM, STOP Output Value Setting Method

Measuring Mode Status

Push the key

[^0]
\# Function mode list \#

			기준설정값
F-01	Division	$1,2,5,10,20,50$	1
F-02	Display filter	$0.05,0.25,0.50,1.00,1.50,2.00 \mathrm{sec}$	1.00
F-03	Buzzer setting	0,1	1
F-04	Relay Delay time	$0 \sim 9.9 \mathrm{sec}$	1.0
F-05	DAC capacity	$0 \sim 9999$	1000
F-08	ID Number	$0 \sim 32$	0
F-09	Baud rate	$2400,4800,9600$	9600
F-10	Pass word	$0 \sim 9999$	0000

F-01. Division (Setting of Indication as Minimum Unit)

(Standard Setting Value: 1)

| | |
| :---: | :--- | :--- |
| 1 | Indicates as1 unit $\quad(0,1,2,3,4 \cdots \cdots)$. |
| 2 | Indicates as 2 unit $(0,2,4,6,8 \cdots \cdots)$. |
| 5 | Indicates as 5 unit $\quad(0,5,10,15 \cdots \cdots)$. |
| 10 | Indicates as 10 unit $\quad(0,10,20,30 \cdots \cdots)$. |
| 20 | Indicates as 20 unit $(0,20,40,60 \cdots \cdots)$. |
| 50 | Indicates as 50 unit $(0,50,100,150 \cdots \cdots)$. |

F-02. Display filter (setting Display speed)

(Standard Setting Value: 5)

0.05	
0.25	
0.50	
1.00	
1.50	
2.00	

F-03. Inside Buzzer setting mode
(Standard Setting Value: 1)

0	Buzzer off
1	Buzzer on

F-04. Relay Delay time mode
(Standard Setting Value: 1.0)

F-05. DAC capacity (Analog Output value Setting) (option)

(Standard Setting Value: 10000)

$\begin{gathered} 0 \\ 1 \\ +99999 \end{gathered}$	Setting of rating capacity for analog output <Cases of Setting Value and Output>				
	Setting Value	Voltage Output ($\pm 10 \mathrm{~V}$)		Current Output ($4 \sim 20 \mathrm{~mA}$)	
		Indicating Value	Output	Indicating Value	Output
		-10000	-10V	-10000	-
	+10000	0	OV	0	4 mA
		+10000	+10V	+10000	20 mA

F-08. ID Number (Number Setting for Communication Equipment)

(Standard Setting Value: 00)

	: No setting of equipment number (Stream mode : always 00data transmission)	
32	$00 \sim 32$: Setting of equipment number (Command mode : Data transmission by command)

F-9. Baud rate

(Standard Setting Value: 9600)

2400	2400 bps	O	0
4800	4800 bps	O	0
9600	9600 bps	O	0

F-10. Pass word setting

(Standard Setting Value: 0000)

0000	0000	: No use pass word function.
\vdots		
9999	$0001 \sim 9999$: Use pass word function

※ If you set the pass word function, you should input pass word to get into the Relay setting, Actual load correction and Function mode.
But, Zero function may be used.

6-2. Actual load calibration

7. Product Inspection

Trembling of Display	- Load cell Broken - Load cell insulation resistance - Interference	- Load cell input, output - Check resistance - Check load cell insulation resistance	- Insulation resistance (Cable \& Case, Over 1000 Mohm)
When the weight is being increased or is not being returned to Zero.	- Defects of load cell	- Check loadcell insulation resistance	
	- Contact failure of load cell	- Check cable connection between loadcell and the body - Check disconnection of load cell cable	
The weight has changed to (-)	- Wrong cable connection of load cell	- Check connection of load cell output cable	- Output: (+SIG) (-SIG)
Indicated as "OVER" or "UNDER"	- Load cell damaged - Unstable connection of load cell	- Check status of load cell and cable connection	

8. OPTION

\#Option-02 (RS232C)

RS232C Interface shall be arranged as separated cabling from AC Power and electric cablings, because it is sensitive against electric noise. The cable shall be used as Shield Cable.

Indicator	Host PC
TX(Transmission Data)	RXD(Receiving Data), Pin No. 2
RX(Receiving Data)	TXD(Transmission Data), Pin No. 3
GN(Ground)	GND(Ground), Pin No. 5

1. TYPE : EIA-232C
2. Method : Half duplex, Asynchronous type
3. Baud-rate : Selection of 2400, 4800, 9600bps
4. Parity : No Parity
5. Data bit $: 8$ bit
6. Stop bit : 1bit
7. Stream mode (Ex. Data +1234.5 Transmission)

ASCII	S	T	,	N	T	,	+	0
HEX	53 H	54 H	2 CH	4 EH	54 H	2 CH	2 BH	30 H

ASCII	1	2	3	4	.	5	CR	LF
HEX	31 H	32 H	33 H	34 H	2 EH	35 H	$0 D H$	0 AH

1) BYTE1, BYTE2
. DATA Stable
: S T
. DATA Unstable: U S
. DATA OVERFLOW: O L . DATA UNDERFLOW: U L
2) BYTE3 ~ BYTE6 : Fixed Letter (, N T ,)
3) BYTE7 ~ BYTE14 : DATA 8 BYTE(+/- included)
4) BYTE15 : CARRIAGE RETURN
5) BYTE16 : LINE FEED
8. Command mode OP-03 : Refer to RS485

\#Option-03 (RS485)

RS485 Interface shall be arranged as separated cabling from AC Power and electric cablings, because it is sensitive against electric noise. The cable shall be used as Shield Cable.

1. TYPE : RS485
2. Method : Half duplex, Asynchronous type
3. Baud-rate : Selection of 2400, 4800, 9600bps
4. Parity : No Parity
5. Data bit $: 8$ bit
6. Stop bit : 1 bit

Please set the number of equipment referring to INDICATOR Manual.
(Possible to set for $1 \sim 32$ channel)
7. Command Type (PC -> INDICATOR)

ASCII	I	D	0	1	P
HEX	49 H	44 H	30 H	31 H	50 H

1) BYTE1, BYTE2 : Fixed Letter (ID)
2) BYTE3, BYTE4 : Equipment Number ($1 \sim 32$)
3) BYTE5 : Order command (P, Z)
8. Command Table

P	50 H	
Z	5 AH	Operate the current value of commanded equipment as ZERO

9. Transmission DATA Type (INDICATOR -> PC)

ASCII	1	D	0	0	1	,	+	0
HEX	53 H	54 H	30 H	30 H	31 H	2 CH	2 BH	30 H

ASCII	1	2	3	4	.	5	CR	LF
HEX	31 H	32 H	33 H	34 H	2 EH	35 H	0 DH	0 AH

1) BYTE1, BYTE2 : Fixed Letter (ID)
2) BYTE3 ~ BYTE5 : Equipment Number (1 ~32)
3) BYTE6 : Fixed Letter (,)
4) BYTE7~BYTE14 : DATA 8byte (+/- included)
5) BYTE15 : CARRIAGE RETURN
6) BYTE16 : LINE FEED

[^0]: RL_ 8 "A" side Over load alarm Setting Value
 $5 t_{\text {_ }} \boldsymbol{R}$ "A" side Over load stop Setting Value

